JOINT PLENARY SESSION 2
Tuesday, April 28, 8:30 A.M. ~ 10:10 A.M.
Ballroom B
Co-chairs: Carlos Mazure, Soitec, France
Ching-Tarng Hsieh, ITRI, Taiwan

8:30 A.M.

 JK21 IoT evolution – by crossing application domains
Peter Hsieh, Sales Director, Greater China
Bosch Sensortec, China

Information technology is the key technology that drives the technical convergence of formerly separated application domains. As the internet started in its early days with a data file transfer approach between geographically separated computers, today the internet already links a variety of devices from a broad application spectrum. While it’s interesting to discuss whether new content drives new applications or new applications generate new content, it’s obvious that formerly separated application domains will be integrated by services. So we experience a shift from contents to service. During his presentation Peter will adopt a sensor solution supplier perspective towards this topic. While looking at the traditional MEMS sensor development for Automotive applications and the current boom of MEMS sensors in consumer electronics, Peter will point towards the linking path of this previously well separated industry segments and the arising business opportunities for system and service integrators.

9:20 A.M.

 JK22 Drivers and Aspects of 2.5/3D Integration as A Potential Game-Changer
Carl Engblom, Director of Ericsson Group Function Technology Management
Ericsson, Sweden

It is increasingly clear that performance and capacity improvements predicated on Moore’s law will not be sufficient to meet projected overall capacity demands in a networked society – in fact more than Moore will be needed. One way to meet these demands is enabled by 2.5D and 3D integration on chip-level. In this note we discuss technical and financial drivers of 2.5/3D from a system integration perspective. Further trends and different approaches in this field are discussed with pros and cons as well with technical and business model challenges. The note also touches on how these integration techniques can be even further strengthened when combined with on-chip or “near-chip” integration of photonics. This combination seems to have the potential to deliver technologies that can meet future capacity and performance requirements given other technical constraints e.g. power consumption.

10:10 A.M. Break